bijective - определение. Что такое bijective
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое bijective - определение

MATHEMATICAL FUNCTION WHICH IS A ONE-TO-ONE MAPPING OF SETS
Bijective; One-to-one correspondence; Bijective map; Bijective mapping; Bijections; Bijectivity; Bijection (mathematics); Bijectional; Bijective function; One-to-one and onto; One to one correspondence; One to One Correspondence; 1-1 Correspondence; Bijective relation; One-one correspondence; 1-to-1 mapping; 1-to-1 map; Bijectio; Bijectiob; 1:1 correspondence; Bijective Function; Partial bijection; Partial one-one transformation; One to one and onto; 1-to-1 correspondence
  • A bijection from the [[natural number]]s to the [[integer]]s, which maps 2''n'' to −''n'' and 2''n'' − 1 to ''n'', for ''n'' ≥ 0.
Найдено результатов: 14
bijection         
<mathematics> A function is bijective or a bijection or a one-to-one correspondence if it is both injective (no two values map to the same value) and surjective (for every element of the codomain there is some element of the domain which maps to it). I.e. there is exactly one element of the domain which maps to each element of the codomain. For a general bijection f from the set A to the set B: f'(f(a)) = a where a is in A and f(f'(b)) = b where b is in B. A and B could be disjoint sets. See also injection, surjection, isomorphism, permutation. (2001-05-10)
Bijection         

In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set. There are no unpaired elements. In mathematical terms, a bijective function f: XY is a one-to-one (injective) and onto (surjective) mapping of a set X to a set Y. The term one-to-one correspondence must not be confused with one-to-one function (an injective function; see figures).

A bijection from the set X to the set Y has an inverse function from Y to X. If X and Y are finite sets, then the existence of a bijection means they have the same number of elements. For infinite sets, the picture is more complicated, leading to the concept of cardinal number—a way to distinguish the various sizes of infinite sets.

A bijective function from a set to itself is also called a permutation, and the set of all permutations of a set forms the symmetric group.

Bijective functions are essential to many areas of mathematics including the definitions of isomorphism, homeomorphism, diffeomorphism, permutation group, and projective map.

Bijective numeration         
NUMERAL SYSTEM IN WHICH EVERY NON-NEGATIVE INTEGER CAN BE REPRESENTED IN EXACTLY ONE WAY
Decimal without a zero; Bijective numeral; Dyadic Encoding; K-adic notation; Proper order
Bijective numeration is any numeral system in which every non-negative integer can be represented in exactly one way using a finite string of digits. The name refers to the bijection (i.
Bijective proof         
PROOF TECHNIQUE IN COMBINATORICS THAT FINDS A BIJECTION BETWEEN THE THINGS TO BE COUNTED AND SOME EASILY COUNTABLE THINGS
In combinatorics, bijective proof is a proof technique for proving that two sets have equally many elements, or that the sets in two combinatorial classes have equal size, by finding a bijective function that maps one set one-to-one onto the other. This technique can be useful as a way of finding a formula for the number of elements of certain sets, by corresponding them with other sets that are easier to count.
homomorphism         
  • surjective]].
MORPHISM (STRUCTURE-PRESERVING MAP) BETWEEN TWO ALGEBRAIC STRUCTURES OF THE SAME TYPE
HomoMorphism; Homomorphisms; Homomorphic; E-free homomorphism; Homomorphy; Homorphic; Principal homomorphism; Surjective homomorphism; Injective homomorphism; Bijective homomorphism
A map f between groups A and B is a homomorphism of A into B if f(a1 * a2) = f(a1) * f(a2) for all a1,a2 in A. where the *s are the respective group operations.
Homomorphism         
  • surjective]].
MORPHISM (STRUCTURE-PRESERVING MAP) BETWEEN TWO ALGEBRAIC STRUCTURES OF THE SAME TYPE
HomoMorphism; Homomorphisms; Homomorphic; E-free homomorphism; Homomorphy; Homorphic; Principal homomorphism; Surjective homomorphism; Injective homomorphism; Bijective homomorphism
In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: () meaning "same" and () meaning "form" or "shape".
Homomorphic         
  • surjective]].
MORPHISM (STRUCTURE-PRESERVING MAP) BETWEEN TWO ALGEBRAIC STRUCTURES OF THE SAME TYPE
HomoMorphism; Homomorphisms; Homomorphic; E-free homomorphism; Homomorphy; Homorphic; Principal homomorphism; Surjective homomorphism; Injective homomorphism; Bijective homomorphism
·adj ·Alt. of Homomorphous.
Homomorphism         
  • surjective]].
MORPHISM (STRUCTURE-PRESERVING MAP) BETWEEN TWO ALGEBRAIC STRUCTURES OF THE SAME TYPE
HomoMorphism; Homomorphisms; Homomorphic; E-free homomorphism; Homomorphy; Homorphic; Principal homomorphism; Surjective homomorphism; Injective homomorphism; Bijective homomorphism
·noun ·same·as Homomorphy.
II. Homomorphism ·noun The possession of but one kind of larvae or young, as in most insects.
III. Homomorphism ·noun The possession, in one species of plants, of only one kind of flowers;
- opposed to heteromorphism, dimorphism, and trimorphism.
Bidirectional transformation         
PROGRAMS IN WHICH A SINGLE PIECE OF CODE CAN BE RUN IN SEVERAL WAYS, SUCH THAT THE SAME DATA ARE SOMETIMES CONSIDERED AS INPUT, AND SOMETIMES AS OUTPUT
Bidirectional Language; Bidirectional Transformation; XSugar (programming language); Bixid (programming language); XSugar; Lens language; Bijective lens
In computer programming, bidirectional transformations (bx) are programs in which a single piece of code can be run in several ways, such that the same data are sometimes considered as input, and sometimes as output. For example, a bx run in the forward direction might transform input I into output O, while the same bx run backward would take as input versions of I and O and produce a new version of I as its output.
Homomorphy         
  • surjective]].
MORPHISM (STRUCTURE-PRESERVING MAP) BETWEEN TWO ALGEBRAIC STRUCTURES OF THE SAME TYPE
HomoMorphism; Homomorphisms; Homomorphic; E-free homomorphism; Homomorphy; Homorphic; Principal homomorphism; Surjective homomorphism; Injective homomorphism; Bijective homomorphism
·noun Similarity of form; resemblance in external characters, while widely different in fundamental structure; resemblance in geometric ground form. ·see Homophyly, Promorphology.

Википедия

Bijection

In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set; there are no unpaired elements between the two sets. In mathematical terms, a bijective function f: XY is a one-to-one (injective) and onto (surjective) mapping of a set X to a set Y. The term one-to-one correspondence must not be confused with one-to-one function (an injective function; see figures).

A bijection from the set X to the set Y has an inverse function from Y to X. If X and Y are finite sets, then the existence of a bijection means they have the same number of elements. For infinite sets, the picture is more complicated, leading to the concept of cardinal number—a way to distinguish the various sizes of infinite sets.

A bijective function from a set to itself is also called a permutation, and the set of all permutations of a set forms the symmetric group.

Bijective functions are essential to many areas of mathematics including the definitions of isomorphisms, homeomorphisms, diffeomorphisms, permutation groups, and projective maps.